Nokia NetMonitor Manual

Version 0.95
11.11.2002

Document keeper : nobbi (nobbi@nobbi.com)
Base document : Flipo (flipo@gyral.com)
PDF + Enhancements to base document : nobbi
Graphics : nobbi
Phone Models and Software versions

Notes for 21xx / 31xx / 81xx phones

The older phones netmonitor has some differences when compared with the one of newer models, but this manual can be used as a guide, because the overall working method and the display contents are very similar in most cases.

Notes for 51xx/61xx/62xx/71xx/88xx/91xx/32xx and other phones

This document covers the majority of pages from these phones netmonitor. Some of them may have little differences, like missing/additional pages, different info, etc.

The 51xx and 61xx pages are almost identical, there are a few pages concerning multiband information in 6150 which are different in the singleband phones, and the xx90 pages are partially different, because of some special things in GSM1900.

The 32xx has some more pages, which are not very well documented yet.

The 62xx and 71xx have a whole bunch of pages concerning W@P and the large internal flash memory. These are not documented yet. If you have any clue about theses pages, send me a mail.

The 91xx pages are almost identical to the 6110 ones, with few additional pages.

The goal right now is to make an accessible manual, that will get better over the time. Please contribute with all the info that you find relevant. Please note that this manual does only deal with pages which are of known content, so if a page is not mentioned here, I have most likely no knowledge about the meaning of the page.

Used Information Sources :

[1] Netmonitor description (RD843.txt) from Nokia Mobile Phones

[3] Researches from Nobbi & various other people
Menu Modes

There are three Menu Display modes:

- the execute mode
- the data display mode
- the help mode

Different modes are marked in this manual as follows:

```
**************        ++++++++++++++        ##############
*            *        +            +        #            #
*   Execute  *        +Data display+        #    Help    #
*    Mode    *        +    Mode    +        #    Mode    #
*            *        +            +        #            #
**************        ++++++++++++++        ##############
```

The execute mode is entered from the menu by selecting a menu directly with his number. If the test
index entered pertains to a test that resets a timer (test 80) for example, then the timer is reset as soon
as the OK button has been pressed in the menu, and the data display mode takes over. In other words,
the execute mode is of the one-shot type. To run another test in the execute mode, the Field Test
Display menu must be reactivated.

So, be very careful when jumping to a netmonitor page directly from the menu selection. You may
activate the execute mode incidentally, causing your phone to behave not as expected.

The data display mode is active by default when the Netmonitor is active. During data display mode, the
field test data is visible on the main display.

During help mode, one screen of instructions is shown for each test to make it easier to identify the test
in question. A long press of the asterisk (*) is used to toggle between these two modes.

The arrow keys (^,v) offer an easy way to switch to another test without using the menu. However,
nothing will be executed or set on although such tests would be passed. This is to prevent the user from
accidentally clearing any valuable data. The help mode is also a non-execute mode. Display numbers
have been selected in such way that no 5-terminated test number is an execute display.

Reserving SIM phonebook locations

When using a phone with enabled field test displays, it is highly recommended to put some default data
into the SIM phonebook locations that are used by some field test displays. Especially Test 17 (BTS
TEST) may give some confusing results if SIM phonebook location 33 is not correctly configured.

Additionally, this prevents accidental storing of phone numbers and names into such locations.

Displays 52 and 53 may also write some data to the SIM phonebook locations 35 and 36.

<table>
<thead>
<tr>
<th>Location</th>
<th>Default</th>
<th>Data Used by Display #</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>65535</td>
<td>71</td>
</tr>
<tr>
<td>32</td>
<td>65535</td>
<td>72</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>17 (BTS TEST)</td>
</tr>
<tr>
<td>34,35,36</td>
<td>34,35,36</td>
<td>52, 53</td>
</tr>
</tbody>
</table>

Reserving SIM SCM locations is not necessary if the user is sure that he will never select these displays
using menu shortcut (which executes the display in question).
Basics: Channel numbers in GSM

GSM uses channel numbers between 0 and 1023. These frequency channels are allocated by the different types of GSM as follows:

<table>
<thead>
<tr>
<th>Type:</th>
<th>Subtype:</th>
<th>Channels:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM400</td>
<td>GSM450</td>
<td>259 .. 293</td>
</tr>
<tr>
<td></td>
<td>GSM480</td>
<td>306 .. 340</td>
</tr>
<tr>
<td>GSM700</td>
<td>GSM750</td>
<td>438 .. 511</td>
</tr>
<tr>
<td>GSM850</td>
<td>GSM850</td>
<td>128 .. 251</td>
</tr>
<tr>
<td>GSM900</td>
<td>PGSM</td>
<td>1 .. 124</td>
</tr>
<tr>
<td></td>
<td>EGSM</td>
<td>0 .. 124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>975 .. 1023</td>
</tr>
<tr>
<td></td>
<td>GSM-R</td>
<td>0 .. 124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>955 .. 1023</td>
</tr>
<tr>
<td>GSM1800</td>
<td>GSM1800</td>
<td>512 .. 885</td>
</tr>
<tr>
<td>GSM1900</td>
<td>GSM1900</td>
<td>512 .. 810</td>
</tr>
</tbody>
</table>
Display 1 – Serving cell info

+abbb ccc ddd+ #CH RxL TxPwr#
+ e ff g mmmm+ #TS TA RQ RLT#
+ nnn ppp+ # C1 C2 #
+ oooo + # CHT #

a H, if carrier numbers are scrolled when hopping is on. Otherwise ''.
b bb When mobile is on a TCH :
 DCH carrier number in decimal.
 When mobile is NOT on a TCH :
 CH means carrier number in decimal.
 If hopping is on, used channels are scrolled when display is updated.
c cc rx level in dBm, minus sign is not shown if <=-100
d dd tx power level. If transmitter is on, symbol * is shown in front of the
 power level value.
e ff Timing advance, range is 0 - 7
f f Timing slot, range is 0 - 73
r r RX quality (sub), range is 0 - 7
m m Radio Link Timeout value. If value is negative, 0 is shown.
 n n Maximum value is 64. When mobile is NOT on TCH then xx is shown.
o o value of the path loss criterium (C1). Range is -99 - 999.
o oo type of current channel (TCH := Traffic Channel):
 THR0 : TCH HalfRate (HR) subchannel 0
 THR1 : TCH HR subchannel 1
 TFR : TCH FullRate (FR)
 TEFR : TCH EnhancedFullRate
 F144 : TCH FR data channel, speed 14.4 kbps
 F96 : TCH FR data channel, speed 9.6 kbps
 F72 : TCH FR data channel, speed 7.2 kbps
 F48 : TCH FR data channel, speed 4.8 kbps
 F24 : TCH FR data channel, speed 2.4 kbps
 H480 : TCH HR data channel, speed 4.8 kbps, subch 0
 H481 : TCH HR data channel, speed 4.8 kbps, subch 1
 H240 : TCH HR data channel, speed 2.4 kbps, subch 0
 H241 : TCH HR data channel, speed 2.4 kbps, subch 1
 FA : TCH FR signalling only (FACCH) channel
 FAH0 : TCH HR signalling only (FACCH) channel, subch 0
 FAH1 : TCH HR signalling only (FACCH) channel, subch 1
 SDCC : SDCC
 AGCH : Access Grant Channel
 CCH : one of the Common Control Channels
 CBCH : CCCH and cell broadcast receiving on
 BCCH : Broadcast Control Channel
 SEAR : SEARCHing for available networks
 NSPS : MS is in 'No Service, Power Save' state

p p value of the cell reselection criterium (C2).
 Range is -99 to 999. If phone is phase 1 then C1 value is shown.
Display 2 – More info about serving cell

++++++	#
+ aa b c Bdd +	#PM RAR Ro BC#
+ ee f +	#RelR QLF #
+ ggg hh iii +	#CRO TO PenT #
+ H=j mm nn +	#H MAIO HSN #
++++++	#

aa paging mode
- NO : normal paging
- EX : extended paging
- RO : paging reorganization
- SB : same as before

b maximum number of Random Access retransmission

c roaming indicator, values are 'R' or ''

Bdd Letter B and BSIC value, range is 0 - 63.

ee Reason of last call release (See Display 39, CC cause codes)

f RX quality (full), range is 0 - 7

ggg Cell reselection offset, range 0 - 126 dB.
- [0 .. 63] * 2 dB. 'xxx' in dedicated mode.
- [0 .. 7] * 10 dB. 70 dB means infinite time. 'xx' in dedicated mode.

hh Temporary offset, range 0 - 60 dB.
- [0 .. 7] * 10 dB. 70 dB means infinite time. 'xx' in dedicated mode.

iii Penalty time, range 0 - 620 s.
- [0 .. 31] * 20 s. 'xxx' in dedicated mode.

j Hopping channel
- 0 Single RF channel
- 1 RF hopping channel

mm mobile allocation index offset, MAIO
Range: 00 to 63 / xx when H=0

nn hopping sequence number, HSN
Range: 00 to 63 / xx when H=0

Display 3 – Serving cell, 1st and 2nd neighbour

++++++	#
+aaabbccddd+	#SCH C1 rx C2#
+aaabbccddd+	#1CH C1 rx C2#
+aaabbccddd+	#2CH C1 rx C2#
+ ef gh +	# 1N 2N #
++++++	#

1. row: serving cell information
2. row: 1. neighbour information
3. row: 2. neighbour information
4. row, ef: 1. neighbour information
4. row, gh: 2. neighbour information

aaa carrier number in decimal, EGSM channels are displayed as Eaa

bbb idle mode : C1 value, range is -99 - 999
- ded. Mode : 'B' and BSIC value

ccc RX level in dBm, minus sign is not shown if <=-100

ddd C2 value, range is -99 - 999

e,g F : cell is in a forbidden location area

f,h B : cell is barred
- N : cell is normal priority
- L : cell is low priority
Display 4 & 5 – 3rd to 8th neighbour cell

<table>
<thead>
<tr>
<th>Row</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3./6. neighbour information</td>
</tr>
<tr>
<td>2.</td>
<td>4./7. neighbour information</td>
</tr>
<tr>
<td>3.</td>
<td>5./8. neighbour information</td>
</tr>
<tr>
<td>4.</td>
<td>4./7. neighbour information</td>
</tr>
<tr>
<td>5.</td>
<td>5./8. neighbour information</td>
</tr>
</tbody>
</table>

aaa carrier number in decimal, EGSM channels are displayed as Eaa
bbb idle mode : Cl value, range is -99 - 999
ded. Mode : 'B' and BSIC value
ccc rx level in dBm, minus sign is not shown if <=-100
ddd C2 value, range is -99 - 999
e,g,i F : cell is in a forbidden location area
f,h,j B : cell is barred
N : cell is normal priority
L : cell is low priority

Display 6 – Network selection display

<table>
<thead>
<tr>
<th>Row</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>last registered network - 1st forbidden network</td>
</tr>
<tr>
<td>2.</td>
<td>1st preferred network - 2nd forbidden network</td>
</tr>
<tr>
<td>3.</td>
<td>2nd preferred network - 3rd forbidden network</td>
</tr>
<tr>
<td>4.</td>
<td>3rd preferred network - 4th forbidden network</td>
</tr>
</tbody>
</table>

aaa country code coded in BCD
bbb network code coded in BCD, third digit can be 'F'

This display shows the last registered networks country code (MCC) and network code (MNC) as well as the codes for four forbidden networks and the first 3 preferred networks.

If a three-digit MNC is used (GSM1900), display looks different:

<table>
<thead>
<tr>
<th>Row</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>last registered network</td>
</tr>
<tr>
<td>2.</td>
<td>1st preferred network</td>
</tr>
<tr>
<td>3.</td>
<td>2nd preferred network</td>
</tr>
<tr>
<td>4.</td>
<td>3rd preferred network</td>
</tr>
</tbody>
</table>

aaa country code coded in BCD
bbb network code coded in BCD, third digit can be 'F'
Display 7 – System information bits for serving cell

++++++++	##############
+A H C I BR+	#Serving Cell#
+a b c d e fg+	#System Info #
+ECSC 2Ter MB+	#Bits #
+ h i j+	#

- **a**: 1 is shown if emergency calls are supported
- **b**: 1 is shown if attach-detach-procedure is allowed
- **c**: 1 is shown if half rate channels are supported
- **d**: 1 is shown if C2 values are broadcasted
- **e**: 1 is shown if system information 7 and 8 are broadcasted
- **f**: 1 is shown if cell broadcast is supported
- **g**: 1 is shown if re-establishment is supported

The following items are used only in dualband phones:

- **h**: In idle mode 1 is shown if Early Classmark (ECSC) sending is supported. In dedicated mode (conversation) X is shown.
- **i**: In idle mode 1 is shown if 2Ter messages are supported. In dedicated mode (conversation) X is shown.
- **j**: MultiBand reporting decimal value (0,1,2,3) is shown if supported. This is shown both in idle and dedicated mode.

The following is picked from Phase2+ ETSI ETS 300578 (TS GSM 05.08), Section 8.4.3 "Additional cell reporting requirements for multi band MS".

For a multi-band MS the number of cells, for each frequency band supported, which shall be included in the measurement report is indicated by the parameter, MULTIBAND_REPORTING. The meaning of different values of the parameter is specified as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 (0)</td>
<td>Normal reporting of the six strongest cells, with known and allowed NCC part of BSIC, irrespective of the band used.</td>
</tr>
<tr>
<td>01 (1)</td>
<td>The MS shall report the strongest cell, with known and allowed NCC part of BSIC, in each of the frequency bands in the BA list, excluding the frequency band of the serving cell. The remaining positions in the measurement report shall be used for reporting of cells in the band of the serving cell. If there are still remaining positions, these shall be used to report the next strongest identified cells in the other bands irrespective of the band used.</td>
</tr>
<tr>
<td>10 (2)</td>
<td>The MS shall report the two strongest cells, with known and allowed NCC part of BSIC, in each of the frequency bands in the BA list, excluding the frequency band of the serving cell. The remaining positions in the measurement report shall be used for reporting of cells in the band of the serving cell. If there are still remaining positions, these shall be used to report the next strongest identified cells in the other bands irrespective of the band used.</td>
</tr>
<tr>
<td>11 (3)</td>
<td>The MS shall report the three strongest cells, with known and allowed NCC part of BSIC, in each of the frequency bands in the BA list, excluding the frequency band of the serving cell. The remaining positions in the measurement report shall be used for reporting of cells in the band of the serving cell. If there are still remaining positions, these shall be used to report the next strongest identified cells in the other bands irrespective of the band used.</td>
</tr>
</tbody>
</table>
Display 10 – Paging Repetition Period, TMSI, Location Update Timer, AFC and AGC

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+TMSIaaaaaaa+</td>
<td>Last assigned TMSI value in hex format</td>
</tr>
<tr>
<td>+T321:bbb/ccc+</td>
<td>Current value of T3212 counter (range is 000 - 'ccc'), where 1 means 6 min time. So, if this value is 2 less than 'ccc' then next periodic location updating will be made within 2 * 6 min = 12 minutes.</td>
</tr>
<tr>
<td>+PRP:d ee ff+</td>
<td>Timeout value of T3212 counter (range is 000 - 240, where 1 means 6 min time between location updates and 240 means 240 * 6 min = 24 h between location updates. 000 means that a periodic location update will not occur) This value is received from the network.</td>
</tr>
<tr>
<td>+ ggggg hhh +</td>
<td>Value of paging repetition period (range is 2 – 9, which means paging will be in every Xth multiframe. When paging is in every second multiframe, mobile takes more current than if it were in every 9th multiframe)</td>
</tr>
<tr>
<td>ee</td>
<td>Downlink signalling failure value. If value is negative, 0 is shown. Maximum value is 45. When mobile is on TCH then xx is shown.</td>
</tr>
<tr>
<td>ff</td>
<td>Gain value on TCH/SDCCH, range is 0 – 93</td>
</tr>
<tr>
<td>ggggg</td>
<td>VCTCXO AFC DAC control, range is -1024 – 1023</td>
</tr>
<tr>
<td>hhh</td>
<td>Serving cell channel number</td>
</tr>
</tbody>
</table>

Display 11 – Network parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+CC:aaa NCbbb+</td>
<td>MCC value in decimal (MCC=Mobile Country Code)</td>
</tr>
<tr>
<td>+ LAC:cccccc +</td>
<td>MNC value in decimal (MNC=Mobile Network Code)</td>
</tr>
<tr>
<td>+ CH : dddd +</td>
<td>LAC value in decimal (in older SW-versions this value is in hexadecimal)</td>
</tr>
<tr>
<td>+ CID:eeeee +</td>
<td>Serving cell channel number</td>
</tr>
<tr>
<td>+CIPHER :aaa +</td>
<td>Cipher value, OFF/A51/A52</td>
</tr>
<tr>
<td>+HOPPING:bbb +</td>
<td>Hopping value, ON/OFF</td>
</tr>
<tr>
<td>+DTX :ccc +</td>
<td>DTX value ON/OFF</td>
</tr>
<tr>
<td>+IMSI :ddd +</td>
<td>IMSI attach ON : IMSI attach on</td>
</tr>
</tbody>
</table>

These values are updated only on when the phone is active on a TCH.
With this display it is possible to see whether the MS uses DTX or not.

This display must be activated from MENU to change DTX state. When MENU is not active and the user is scrolling field test displays with NEXT and PREVIOUS, the DTX state will not be changed.

aaaaaaa status of switched mode.

DTX:ON: MS uses DTX
DTX:OFF: MS does not use DTX
DTX:DEF: MS use default state of DTX
NOTALLOWED: BS does not allow MS to decide if it uses DTX or not.

bbb default state of DTX in MS. The value is either ON or OFF

ccc is DTX value from BS

MAY: BS allows MS to decide if it uses uplink DTX or not
USE: BS controls MS to use DTX (on uplink)
NOT: BS controls MS not to use DTX (on uplink)

When selected, changes the value of the Screening Indicator from 0 to 1 and vice versa.
Display 17 – Switch 'BTS Test' Status

This display is used to toggle the BTS_TEST flag in EEPROM. If BTS_TEST is set then each time the mobile sends a search list it uses only the carrier number stored on SIM phonebook location 33. Also the neighbor information from system information messages is ignored. If the BTS_TEST flag is not set, then the value of SIM phonebook location 33 is ignored and the mobile behaves normally (i.e. does neighbor measurements according to GSM specifications).

To activate BTS TEST perform the following steps:
- Save desired channel number in SIM phonebook location 33
- Select display 17 in execute mode
- Switch power off and on OR force a cell reselection

If activation succeeded, you will read "BTS TEST ON" in display 17. The 6210 will show "BTS TEST REQUESTED" instead.

To deactivate BTS tests either select display 17 in execute mode or save a number in SIM phonebook location 33 which does NOT represent a valid carrier number, then switch power off and on OR force a cell reselection

CAUTION! The display does not show the value of the BTS_TEST flag in EEPROM. Although the value is set, BTS_TEST can show to be off. If there is no legal carrier number in SIM phonebook location 33 (GSM900: 1-124, GSM1800: 512-885, EGSM: 0, 975-1023) the display shows that BTS_TEST is off. Also if the mobile was already registered to some carrier before switching BTS_TEST status, the display can show a different value from the one in EEPROM.

Display 18 – Lights status control

Forces keyboard and display lights on/off while displaying any netmonitor screen. The light will not remain on after leaving netmonitor

Display 19 – Toggle Cell Barred Status

This test is meant to be used when some cells are tested before taking them into commercial use. By setting the CELL_BARR to on in the base station normal GSM phones will not try to camp on these barred cells.

By selecting CELL BARR REVERSE, the MS will only use the cells which have CELL_BARRED set.

By selecting CELL BARR DISCARD, the MS will use all cells, irrespective weather CELL_BARRED is set or not.

NOTE: If a cell has been selected before barring state in phone is changed the selected cell will remain the current cell. After the next cell reselection the cell barring state is working as expected.
Display 20 – Charging state

aaa bbbbbb	#BatVol ChMod#
Tccc dddd	#Btemp ChTime#
Ceee Wfff	#ChrgVol Pwm #
gggg hhhh	# Btyp BFDc #

aaa
Battery voltage in decimal, range is 0.00 - 9.99 V, decimal point is not shown; e.g. 7.19 V is shown as 719 on the display.

bbbbbb
Charging mode 5 digit symbol:
- xxxx : Charger not connected or charging disabled.
- BatCk : Battery testing is going.
- BSIFa : Charging off because of battery BSI measurement failed.
- CelBr : Charging off because one or more cells broken inside battery.
- ChaCk : EM is checking charger.
- Charg : Charging.
- ColdC : Cold charging.
- ColdM : Battery cold and maintenance going.
- CurFa : Charging off because charger current measurement failed.
- DisCh : Battery discharging going.
- F_Che : Fast charging checks.
- Faile : Failure.
- FastC : Fast charging going.
- FullM : Battery full and maintenance going.
- HotM : Battery hot and maintenance going.
- I_Che : Init checks.
- InitC : EM charging is being initialized.
- L_Che : Li charging checks.
- LiAFu : PWM level is below the battery full limit.
- LiDCH : Li-ion DCH charging.
- LiFul : PWM has been below the battery full limit for a certain time that is specified for full battery.
- LiHot : Li-ion hot charging.
- LithC : Charging of Lithium-ion battery.
- LtxO : TX on and Li charging going.
- LNFTx : TX on, Li charging going and battery is not full anymore.
- M_Che : Maintenance charging checks.
- MaBFD : Maintenance BFD charging.
- Maint : Maintenance charging.
- TmpFa : Charging off because battery NTC measurement failed.
- TXNoF : TX on, Ni charging going and battery is not full anymore.
- TXOnC : TX on and Ni charging going.
- VolFa : Charging off because charger voltage measurement failed.

ccc
Battery temperature in centigrade, from -30 to +90.

ddd
Charging time. Format is HMM. Timer is automatically reset and started when charger is connected and stopped when battery is full or charger is disconnected.

eee
Charger voltage in decimal, range is 0.0 - 18.7 V, decimal point is not shown.

fff
Charge control output, decimal, range is 000 - 255.

gggg
Lithium battery type (BSI value multiplied by 4), or NiMH battery size.

hhhh
Battery full delay counter. When battery is getting full and charging current is less than predefined limit, this timer will be started. If timer reaches 0, charging will be stopped.
Display 21 – Constant voltage charging display

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaa</td>
<td>Difference between measured voltage and goal voltage, decimal point is not</td>
</tr>
<tr>
<td></td>
<td>shown.</td>
</tr>
<tr>
<td>bbbb</td>
<td>Difference between measured voltage and result of previous measurement</td>
</tr>
<tr>
<td></td>
<td>(basically same as using change of error), decimal point is not shown.</td>
</tr>
<tr>
<td>cccc</td>
<td>Battery up voltage (highest measured voltage), maximum ripple voltage.</td>
</tr>
<tr>
<td>dddd</td>
<td>Battery down voltage (lowest measured voltage), minimum ripple voltage.</td>
</tr>
<tr>
<td>eeee</td>
<td>Sum of membership function sets beliefs, range 0.00-9.99, decimal point is</td>
</tr>
<tr>
<td></td>
<td>not shown; e.g. 1.53 is shown as 153. If sum of 1.00 is reached then battery</td>
</tr>
<tr>
<td></td>
<td>full indication is shown.</td>
</tr>
<tr>
<td>ffff</td>
<td>Average measured voltage.</td>
</tr>
</tbody>
</table>

Display 22 – Battery full detection

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaaa</td>
<td>DerivCount membership function set, range 0.00-1.00, decimal point is not</td>
</tr>
<tr>
<td></td>
<td>shown; e.g. 0.23 is shown as 023.</td>
</tr>
<tr>
<td>Cbbb</td>
<td>ChargeAmount membership function set, range 0.00-1.00, decimal point is not</td>
</tr>
<tr>
<td></td>
<td>shown; e.g. 0.23 is shown as 023.</td>
</tr>
<tr>
<td>Dccc</td>
<td>VolDiffToMax membership function set, range 0.00-1.00, decimal point is not</td>
</tr>
<tr>
<td></td>
<td>shown; e.g. 0.23 is shown as 023.</td>
</tr>
<tr>
<td>Rddd</td>
<td>VolDropCnt membership function set, range 0.00-1.00, decimal point is not</td>
</tr>
<tr>
<td></td>
<td>shown; e.g. 0.23 is shown as 023.</td>
</tr>
<tr>
<td>Ieee</td>
<td>VolDiffTime membership function set, range 0.00-1.00, decimal point is not</td>
</tr>
<tr>
<td></td>
<td>shown; e.g. 0.23 is shown as 023.</td>
</tr>
<tr>
<td>Afff</td>
<td>AverDiff membership function set, range 0.00-1.00, decimal point is not</td>
</tr>
<tr>
<td></td>
<td>shown; e.g. 0.23 is shown as 023.</td>
</tr>
<tr>
<td>Tggg</td>
<td>Temperature membership function set, range 0.00-1.00, decimal point is not</td>
</tr>
<tr>
<td></td>
<td>shown; e.g. 0.23 is shown as 023.</td>
</tr>
<tr>
<td>Vhhh</td>
<td>Voltage membership function set, range 0.00-1.00, decimal point is not</td>
</tr>
<tr>
<td></td>
<td>shown; e.g. 0.23 is shown as 023.</td>
</tr>
</tbody>
</table>
Display 23 – Battery and phone state monitor

<table>
<thead>
<tr>
<th>Display 23 – Battery and phone state monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaa</td>
</tr>
<tr>
<td>bbbb</td>
</tr>
<tr>
<td>cccc</td>
</tr>
<tr>
<td>dddd</td>
</tr>
<tr>
<td>eeee</td>
</tr>
<tr>
<td>ffff</td>
</tr>
<tr>
<td>gggg</td>
</tr>
<tr>
<td>hhhh</td>
</tr>
<tr>
<td>iiii</td>
</tr>
<tr>
<td>jjjj</td>
</tr>
</tbody>
</table>

Display 24 – BSI values

<table>
<thead>
<tr>
<th>Display 24 – BSI values</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaa</td>
</tr>
<tr>
<td>bbbb</td>
</tr>
<tr>
<td>cccc</td>
</tr>
<tr>
<td>dddd</td>
</tr>
<tr>
<td>eeee</td>
</tr>
<tr>
<td>ffff</td>
</tr>
</tbody>
</table>

Display 30 – Audio API register display

<table>
<thead>
<tr>
<th>Display 30 – Audio API register display</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaa</td>
</tr>
<tr>
<td>bbbb</td>
</tr>
<tr>
<td>cccc</td>
</tr>
<tr>
<td>dddd</td>
</tr>
<tr>
<td>eeee</td>
</tr>
<tr>
<td>ffff</td>
</tr>
<tr>
<td>gggg</td>
</tr>
<tr>
<td>hhhh</td>
</tr>
</tbody>
</table>
Display 34 – FBUS display

```
*aaaaa       *         #Reset reason#
*bbbbbbbb    *         #Task name   #
*            *         #            #
*            *         #            #
```

aaaaa last reset reason.
NORM : Probably normal power up.
UNKNO : Default value, reset reason is unknown.
HW WD : ASIC watchdog timeout.
SWDSP : DSP recovery reset
SWSIM : SIM contact failure reset
SWIDL : Idle task not running reset
STACK : Task stack overflow

bbbbbbbb Name of running task before reset.

Display 36 – Counters for resets

```
+ aa  bb  cc +
+ dd  ee  ff +
+    +
+    +
```

aa Unknown resets
bb ASIC watchdog resets
cc DSP recovery resets
dd SIM contact failure resets
ee Idle task not running resets
ff Task stack overflow resets
Display 39 – Information about reasons for call clearing

<table>
<thead>
<tr>
<th>CC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unassigned (unallocated) number</td>
</tr>
<tr>
<td>3</td>
<td>no route to destination</td>
</tr>
<tr>
<td>8</td>
<td>operator determined barring</td>
</tr>
<tr>
<td>16</td>
<td>normal call clearing</td>
</tr>
<tr>
<td>17</td>
<td>user busy</td>
</tr>
<tr>
<td>18</td>
<td>no user responding</td>
</tr>
<tr>
<td>19</td>
<td>user alerting, no answer</td>
</tr>
<tr>
<td>21</td>
<td>call rejected</td>
</tr>
<tr>
<td>22</td>
<td>number changed</td>
</tr>
<tr>
<td>27</td>
<td>destination out of order</td>
</tr>
<tr>
<td>28</td>
<td>invalid number format/number incomplete</td>
</tr>
<tr>
<td>31</td>
<td>normal/unspecified</td>
</tr>
<tr>
<td>34</td>
<td>no circuit/channel available</td>
</tr>
<tr>
<td>38</td>
<td>network out of order</td>
</tr>
<tr>
<td>41</td>
<td>temporary failure</td>
</tr>
<tr>
<td>42</td>
<td>switching equipment congestion</td>
</tr>
<tr>
<td>44</td>
<td>requested channel not available</td>
</tr>
<tr>
<td>47</td>
<td>resource unavailable</td>
</tr>
<tr>
<td>50</td>
<td>requested facility not subscribed</td>
</tr>
<tr>
<td>55</td>
<td>Incoming calls barred within the CUG</td>
</tr>
<tr>
<td>57</td>
<td>bearer capability not authorized</td>
</tr>
<tr>
<td>65</td>
<td>bearer service not implemented</td>
</tr>
<tr>
<td>68</td>
<td>ACM equal to or greater than ACMmax</td>
</tr>
<tr>
<td>69</td>
<td>requested facility not implemented</td>
</tr>
<tr>
<td>88</td>
<td>incompatible destination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no error</td>
</tr>
<tr>
<td>2</td>
<td>IMSI unknown in HLR</td>
</tr>
<tr>
<td>3</td>
<td>illegal MS</td>
</tr>
<tr>
<td>4</td>
<td>IMSI unknown in VLR</td>
</tr>
<tr>
<td>5</td>
<td>IMEI not accepted</td>
</tr>
<tr>
<td>6</td>
<td>illegal ME</td>
</tr>
<tr>
<td>11</td>
<td>PLMN not allowed</td>
</tr>
<tr>
<td>12</td>
<td>location area not allowed</td>
</tr>
<tr>
<td>13</td>
<td>roaming not allowed in this location area</td>
</tr>
<tr>
<td>17</td>
<td>network failure</td>
</tr>
<tr>
<td>22</td>
<td>network congestion</td>
</tr>
<tr>
<td>32</td>
<td>service option not supported</td>
</tr>
<tr>
<td>33</td>
<td>service option not subscribed</td>
</tr>
<tr>
<td>34</td>
<td>service temporarily out of order</td>
</tr>
<tr>
<td>38</td>
<td>call cannot be identified (call RE)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RR</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>normal release</td>
</tr>
<tr>
<td>1</td>
<td>unspecified</td>
</tr>
<tr>
<td>2</td>
<td>channel unacceptable</td>
</tr>
<tr>
<td>3</td>
<td>timer expired</td>
</tr>
<tr>
<td>4</td>
<td>no activity on the radio path</td>
</tr>
<tr>
<td>5</td>
<td>pre-emptive release</td>
</tr>
<tr>
<td>8</td>
<td>handover impossible, timing advance out of range</td>
</tr>
<tr>
<td>9</td>
<td>channel mode unacceptable</td>
</tr>
<tr>
<td>10</td>
<td>frequency not implemented</td>
</tr>
<tr>
<td>65</td>
<td>call already cleared</td>
</tr>
<tr>
<td>97</td>
<td>message type not compatible with protocol state</td>
</tr>
<tr>
<td>101</td>
<td>no cell allocation available</td>
</tr>
<tr>
<td>111</td>
<td>protocol error, unspecified</td>
</tr>
</tbody>
</table>
Display 40 – Reset handover counters

```
***************          ##############
*  RESET *            # Use menu  #
* HANOVER *           # to reset  #
* COUNTERS *         # handover   #
*              *     # counters   #
***************          ##############
```

With this display all counters of the handover displays can be reset.

Display 41 (singleband) – Handover display

```
++++++++++++++          ##############
+HandOOK: aaa+          #HandOvOKCntr#
+PrevCh : bbb+          #PrevChanCntr#
+HONotOK: ccc+          #HandOvNOKCnt#
+HOIntra: ddd+          #HOIntraOKCnt#
++++++++++++++          ##############
```

aaa counter for successful handovers (max. amount 999)
bbb counter for successful back to previous channel attempts
ccc counter for failed handovers
ddd counter for successful intracell handovers or assignments
(max. amount 999)

Counters will stop when they reach their maximum. To initialize the counters to zero, select display 40. Display 60 also initializes these counters.

Display 41 (dualband) – Handover display, INTER CELL

```
++++++++++++++          ##############
+ aaaa  bbbb +          #G>G InterD>D#
+ cccc  dddd +          #G>D OK D>G#
+eeefffggghhh+          #InterHoFail #
+iiijjjkkklll+          # BackToPrev #
++++++++++++++          ##############
```

aaaa counter of successful handovers (max 9999) from GSM900 to GSM900
bbb counter of successful handovers (max 9999) from GSM1800 to GSM1800
ccc counter of successful handovers (max 9999) from GSM900 to GSM1800
dddd counter of successful handovers (max 9999) from GSM1800 to GSM900
eee counter for failed handovers (max 999) from GSM900 to GSM900
fff counter for failed handovers (max 999) from GSM1800 to GSM1800
ggg counter for failed handovers (max 999) from GSM900 to GSM1800
hhh counter for failed handovers (max 999) from GSM1800 to GSM900

iii counter of successful back to previous channel attempts (max 999)
jjj counter of successful back to previous channel attempts (max 999)
kkk counter of successful back to previous channel attempts (max 999)
lll counter of successful back to previous channel attempts (max 999)

Counters will stop when they reach their maximum. To initialize the counters to zero, select display 40. Display 60 also initializes these counters.
Display 42 (dualband) – Handover display, INTRA CELL

+ aaaa bbbb + #G>G IntraD>D#
+ cccc dddd + #G>D OK D>G#
+eeeffggghhh+ #IntraHoFail #
+iijjjkkklll+ # BackToPrev #

aaa counter of successful INTRACELL handovers (max 9999) from GSM900 to GSM900
bbb counter of successful INTRACELL handovers (max 9999) from GSM1800 to GSM1800
ccc counter of successful INTRACELL handovers (max 9999) from GSM900 to GSM1800
ddd counter of successful INTRACELL handovers (max 9999) from GSM1800 to GSM900
ee counter of failed INTRACELL handovers (max 999) from GSM900 to GSM900
fff counter of failed INTRACELL handovers (max 999) from GSM1800 to GSM1800
ggg counter of failed INTRACELL handovers (max 999) from GSM900 to GSM1800
hhh counter of failed INTRACELL handovers (max 999) from GSM1800 to GSM900

ccc counter of successful back to previous normal INTRA CELL channel attempts
(max 999) from GSM900 to GSM900
jjj counter of successful back to previous normal INTRA CELL channel attempts
(max 999) from GSM1800 to GSM1800
kkk counter of successful back to previous normal INTRA CELL channel attempts
(max 999) from GSM900 to GSM1800
lll counter of successful back to previous normal INTRA CELL channel attempts
(max 999) from GSM1800 to GSM900

Counters will stop when they reach their maximum. To initialize the counters to zero,
select display 40. Also display 60 initializes these counters.

Display 43 L2 display

+T200MS :aaaa+ #T200 MS GSM #
+T200BS :bbbb+ #T200 BS GSM #
+T200MS :cccc+ #T200 MS DCS #
+T200BS :dddd+ #T200 BS DCS #

aaa GSM900 : counts how many times T200 in MS has expired and therefore a L2
transmission has been repeated.
bbbb GSM900 : counts how many times T200 in BS (network) has expired and
therefore a L2 frame was requested again.
ccc cccc GSM1800: counts how many times T200 in MS has expired and therefore a L2
transmission has been repeated. (for dualband phones)
dddd GSM1800: counts how many times T200 in BS (network) has expired and
therefore a L2 frame was requested again. (for dualband phones)

The GSM900 counters are also valid in GSM900/GSM1800 multiband phones. Counters will
stop when they reach their maximum. To initialize the counters to zero, select
display 40. Display 60 also initializes these counters.

Display 44 – Toggle revision level

* REVISION *
*LEVEL IS 00 *
*LEVEL IS 01 *

When selected, changes the value of Revision Level from 0 to 1 and vice versa. I have
no idea if this makes sense in any circumstances.
Display 45 – Toggle transmitter functionality

* *
*TRANSMITTER *
* XXXXXXXX * XXXXXXXX ENABLED or DISABLED
* *

This display has no effect in 7110 phone, irrespective of the displayed status the transmitter is always switched on.

When selected, this display disables transmitter functionality if enabled and vice versa. New setting is valid until next power off or until new execute of this display.

This FTD can be used to simulate easily situations when the MS can hear the network (i.e. receiving signal is good enough), but the network can not receive any messages from the MS.

Location updating attempts or MO call establishment attempts can be failed (random access failure) by this FTD and field testing of these failures is much easier now.

Next periodic location updating can be checked from the display 10 (chapter 3.1.10) by taking the difference of current T3212 counter value and T3212 timeout value.

Display 51 – SIM information

++++++++++++++ ##############
+aaa bbb ccc + #VSel Bau SA1#
+ dddddd + #SCond CSTop#
+ f g hh ii + #PIN12 PUK12#
+ j kkkk + # ATR FE/PE #
++++++++++++++ ##############

aaa SIM voltage selection type (5, 3 or 3/5)
bbb SIM baudrate (372, 64, 32 or 0)
ccc Clock stop allowed, Yes or No
ddd Clock stop condition, Up/Down/xxxxxxxx if no preferred level
f PIN1 attempts left (0,1,2,3)
g PIN2 attempts left (0,1,2,3)
hh PUK1 attempts left (0-10)
ii PUK2 attempts left (0-10)
j ATR retransmission counter (0-9)
kkkk Transmission frame/parity errors, FE/PE + hexadecimal count

Display 54 – Block display 1

++++++++++++++ ##############
+aa bb aa bb+ #ResF1 ResF2#
+aa bb aa bb+ #ResF3 ResF4#
+aa bb aa bb+ #ResF5 ResF6#
+aa bb aa bb+ #ResF7 ResF8#
++++++++++++++ ##############

1. row: Block set 1, block set 2
2. row: Block set 3, block set 4
3. row: Block set 5, block set 6
4. row: Block set 7, block set 8

aa Number of reserved blocks
bb Number of free blocks in worst case
Display 55 – Block display 2

```
+----------------+-------------------+
| +aa bb aa bb+ | #ResF9 ResF10# |
| +aa bb aa bb+ | #ResF11 ResF12# |
| +aa bb aa bb+ | #ResF13 ResF14# |
| +aa bb aa bb+ | #ResF15 ResF16# |
+----------------+-------------------+
```

1. row: Block set 9, block set 10
2. row: Block set 11, block set 12
3. row: Block set 13, block set 14
4. row: Block set 15, block set 16

aa Number of reserved blocks

bb Number of free blocks in worst case

Display 56 – Block display 3

```
+----------------+-------------------+
| + aaaaa bbb +  | # Ptr  Cntr #     |
| + ccccccc +    | # Task #          |
| +             +  | # #               |
| +             +  | + +               |
+----------------+-------------------+
```

aaaaaa Pointer to memory where double deallocation was called, in hex format.

bbbbbb Counter for failed deallocations.

cccccccc Name of task which last tried to double deallocate a block.

Note: This display is only valid when the counter for failed deallocations is not zero.

Display 57 – Memory status before reset

```
+----------------+-------------------+
| +aaaaaaaaaaaa+ | # Status of #     |
| +aaaaa... +    | # stacks #        |
| +bbbbbbbb +    | # Block sets #    |
| +             +  | + #               |
+----------------+-------------------+
```

aaaaaa Status of each stack before reset. First position contains the status of stack 0, second position the status of stack 1 and so on. The last position contains the status of System stack. Number of stacks depends on the current configuration of SW. Possible values for each stack are:

- 0 : status OK, no overflow
- 1 : status not OK, stack overflow,

bbbbbb Status of each block set before reset. First position contains the status of block set 1, second position the status of block set 2 and so on. Possible values for each block set are:

- 0 : status OK
- 1 : block set full
- 2 : (de)allocation error or total memory corruption

Note: This display is only valid when a unknown or a stack overflow interrupt has occurred.
Display 60 – Reset counters to zero

With this display all counters of the field test display can be reset (i.e. all counters in 40 and 60 series).

On poweroff the values of the counter displays are stored onto the EEPROM, where they will be read during power on. To initialize the counters to zero, select display 60. These counters are automatically reset to zero when they exceed their maximum value.

Display 61 – Search and reselection counter display

aaaaa counter for MDI_NO_PSW_FOUND message received from DSP in decimal form (max 99999).
bbbb counter for synchronization measurement attempts in decimal form. If counter value is over 9999 then four x are shown.
cccc counter for cell reselections in decimal form (max 99999).

dddd counter for synchronization measurement attempts in decimal form. If counter value is over 9999 then five x are shown.
eeee counter for GSM900 -> GSM1800 cell reselections in decimal form (max 99999).
fffe counter for GSM1800 -> GSM900 cell reselections in decimal form (max 99999).
gggg counter for GSM900 -> GSM1800 cell reselections in decimal form (max 99999).
hhhh counter for GSM1800 -> GSM900 cell reselections in decimal form (max 99999).
Display 62 – Neighbour measurement counter display

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ PSW :aaaa</td>
<td>Counter for neighbour PSW measurement attempts</td>
</tr>
<tr>
<td>+ SYNCr:bbbb</td>
<td>Counter for neighbour synchronization measurement attempts</td>
</tr>
<tr>
<td>+ BCCH :cccc</td>
<td>Counter for neighbour BCCH measurement attempts</td>
</tr>
<tr>
<td>+ BCCHEx:dd</td>
<td>Counter for neighbour BCCH Ext measurement attempts</td>
</tr>
</tbody>
</table>

Counter values are shown in hexadecimal form.

Display 63 – Call attempts counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ aa</td>
<td>Reason of last call release</td>
</tr>
<tr>
<td>+ bb</td>
<td>Direction of last call release</td>
</tr>
<tr>
<td>+ ccc</td>
<td>Count of all MO call attempts made</td>
</tr>
<tr>
<td>+ ddd</td>
<td>Count of succeeded MO calls</td>
</tr>
<tr>
<td>+ eee</td>
<td>Count of all call setups received</td>
</tr>
<tr>
<td>+ fff</td>
<td>Count of succeeded MT calls</td>
</tr>
</tbody>
</table>

Display 64 – Location Update attempts counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ aa</td>
<td>Reason of last normal location update failure</td>
</tr>
<tr>
<td>+ bbb</td>
<td>Count of normal location update attempts</td>
</tr>
<tr>
<td>+ ccc</td>
<td>Count of succeeded normal location updates</td>
</tr>
<tr>
<td>+ dd</td>
<td>Reason of last periodic or IMSI attach location update failure</td>
</tr>
<tr>
<td>+ eee</td>
<td>Count of all periodic and IMSI attach location update attempts</td>
</tr>
<tr>
<td>+ fff</td>
<td>Count of succeeded periodic and IMSI attach location updates</td>
</tr>
</tbody>
</table>
Display 65 – SMS attempts counters

<table>
<thead>
<tr>
<th>Reason of last message sending failure</th>
<th>Count of all MO short message attempts</th>
<th>Count of succeeded MO short message attempts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Unassigned (unallocated) number</td>
<td>aa</td>
<td>bbb</td>
</tr>
<tr>
<td>8: Operator determined barring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10: Call barred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21: Short message transfer rejected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27: Destination out of service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28: Unidentified subscriber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29: Facility rejected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30: Unknown subscriber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41: Temporary failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42: Congestion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47: Resources unavailable, unspecified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50: Requested facility not subscribed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69: Requested facility not implemented</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81: Invalid short message transfer reference value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95: Invalid message, unspecified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96: Invalid mandatory information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97: Message type non-existent or not implemented</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98: Message not compatible with short message protocol state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99: Information element non-existent or not implemented</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111: Protocol error, unspecified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127: Interworking, unspecified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count of all MT short message attempts</td>
<td>bbb</td>
<td></td>
</tr>
<tr>
<td>Count of succeeded MT short message attempts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reason of last message receiving failure</td>
<td>dd</td>
<td></td>
</tr>
<tr>
<td>22: Memory capacity exceeded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count of all received cell broadcast schedule messages</td>
<td>gggg</td>
<td></td>
</tr>
</tbody>
</table>

Display 66 – SMS timeout counters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>51xx, 61xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7110:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Display 70 – Temporary counters of DSP

```
+ aaaa bbbb + # Temporary #
+ cccc dddd + #DSP counters#
+ eeee ffff + #(R DSP2FTD) #
+ gggg hhhh + # #
```

```
aaaa  Contents of API memory location r_dsp2ftd+0 in hex format
bbbb  Contents of API memory location r_dsp2ftd+1 in hex format
cccc  Contents of API memory location r_dsp2ftd+2 in hex format
dddd  Contents of API memory location r_dsp2ftd+3 in hex format
eeee  Contents of API memory location r_dsp2ftd+4 in hex format
ffff  Contents of API memory location r_dsp2ftd+5 in hex format
gggg  Contents of API memory location r_dsp2ftd+6 in hex format
hhhh  Contents of API memory location r_dsp2ftd+7 in hex format
```

The display is to be used by special debugging DSP SW which can put some useful information to the memory locations on API RAM. When this display is selected then MCU copies the contents of those memory locations into display with format specified above.

This display may not be included in normal SW releases.

Display 71 & 72 – Control DSP audio enhancements 1 & 2

```
**************        ##############
*AUDIO       *        #Use menu to #
*ENHANCEMENT *        #control DSP #
*DISPLAY 1/2 *        #  audio    #
*    XXXXX   *        #enhancements#
**************        ##############
```

```
Caution : playing around with this display may result in (temporary) malfunction of the audio path in your phone. Please be careful.

XXXXX  Control word for DSP Audio Enhancements in decimal format.
```

The control word is sent to the DSP in the MDI_AUDIO_CONFIGURE message.

Prior using this display the control word must be written to location 31/32 of the SIM in decimal format.

When the display 71/72 is choosen from the menu, (EXECUTE MODE) the control word is sent to the DSP in MDI_AUDIO_CONFIGURE message immediately. MDI_AUDIO_CONFIGURE message is also sent every time when this display is entered using arrow keys and previous display was 72/71.

Used together with display 72/71, this display makes rapid on/off switching of audio DSP algorithms possible. Switching with arrow keys is possible only after this display or display 72/71 has been selected from the menu. This prevents accidental on/off switching of algorithms when browsing displays by arrow keys.

Entered values are not saved to EEPROM, so it is possible to reset to the correct values by removing the battery.
Display 73 – Generic display for DSP Audio Enhancements

+++++++ Example: ++++++++ #######
+ aaa bb aaa+ + 101 00 408+ #DB1 B1 DB2#
+cccc cc cccc+ + BCDE 88 7FFF+ #HEX1 B2 HEX2#
+cccc cc cccc+ + 0001 FF 0003+ #HEX3 B3 HEX4#
+ cccc cccc + + DEAD DEFA + # HEX5 HEX6 #
+++++++ ++++++++ #######

aaa General dB value, e.g. signal level in dB. decimal point and sign is not shown, ie. -10.5 is show 105.
bb General byte value, used for combined flags. Value is in hex format.
cccc General hex value.

The display is reset and restarted when call is taken (if FT display counters are enabled). When call is terminated the display is frozen to show last values. Display values will not be saved to the EEPROM.

Display 74 – DSP audio enhancements 1 (DRC)

+++++++ Example: ++++++++ #######
+ aaa bbb + + 101 408 + #DSigL USigL #
+ cccc + + 480 + # NseLv1#
+ dd ee + + 01 03 + # DTbl UTbl #
+ + + + #
+++++++ ++++++++ #######

aaa Downlink signal level in dB, calculated using DRC level measuring block. Decimal point and sign is not shown, ie. -10.5 is show 105.
bbb Uplink signal level in dB, calculated using DRC level measuring block. Decimal point and sign is not shown, ie. -10.5 is show 105.
ccc Background noise signal level in dB, calculated using DRC level measuring block, decimal point and sign is not shown, ie. -10.5 is show 105.

dd Downlink DRC table value, shown in decimal integer, two digits.
e Uplink DRC table value, decimal integer, two digits.

The display is reset and restarted when call is taken (if FT display counters are enabled). When call is terminated the display is frozen to show last values. Display values will not be saved to the EEPROM.

Display 75 – Audio path status

+++++++ EnvExtAudStatus#
+Mod:aaaaaaaa+ #ExtAudStatus#
+AudReq: bbbb+ #AudioRequest#
+AccMod: cccc+ #AccessoryMod#
+H2Path: dd + #HFU2Path #
+++++++ ++++++++ #######

aaaa external audio status, values are: HP, HF, HEADSET, EXT and HP_OFFHO
bbbb audio_request bitmap in hex, contents (masks) are specified in AUD_DATA.H
cccc Accessory audio mode
dd HFU-2 path
Display 76 – Ear (= downlink) audio display

Example: +Vaa Pbbb + V0A P125 #EVol PeakVal#
+ Cccc CAddd + C000 CA001 #CutOff CAve#
+PAeee + PA353 #PkAver#

+++

aa Volume level.
bbl Peak value of downlink audio signal during last frame in dB, decimal point and sign is not shown, ie. -10.5 is show 105.
cccc Cut off counter value of last frame. This counter counts how many samples are saturated during last frame.
dddd Moving average of cut off counter, decimal point and sign is not shown, ie. -10.5 is show 105.

Display values will not be saved to the EEPROM.

Display 77 – Microphone (= uplink) audio display

Example: +Paaa Abbb + P303 A225 #MicPeak MAve#
+ Cccc CAddd + C023 CA003 #CutOff CAve#
+ + + + # # #

+++

aaa Peak value of uplink audio signal during last frame in dB decimal point and sign is not shown, ie. -10.5 is show 105.
bbl Moving average of peak levels, decimal point and sign is not shown, ie. -10.5 is show 105.
cccc Cut off counter value of last frame. This counter counts how many samples are saturated during last frame.
dddd Moving average of cut off counter

The display is reset and restarted when call is taken (if FT display counters are enabled). When call is terminated the display is frozen to show last values. Display values will not be saved to the EEPROM.
Display 78 – DSP audio enhancements (AEC)

Decimal point and sign are not shown in values. This means:
-10.5dB would be displayed as "105"
-0.5 dB would be displayed as " 5"

aaa Electro-acoustic attenuation of echo from DSP point of view in dB
bbb Adaptive attenuation of echo
ccc Total echo return loss
ddd RX attenuator gain in dB
eee TX attenuator gain in dB
fff Gain limit for RX and TX
ggg Tx noise level in dB
h Adaptive filter status (0 or 1)
I Comfort noise generation (0 or 1)
jjj AEC mode (0 or 1)
kkkk Shows 16 last RX VAD decisions in HEX format
llll Shows 16 last TX VAD decisions in HEX format

Display 79 – Audio equalizer display

Example: MiCutB MiCTA#

aaaaa Saturated samples before microphone equalizer in decimal 16 bit unsigned integer format.
bbbbb Saturated samples after microphone equalizer in decimal 16 bit unsigned integer format.
ccccc Saturated samples before earpiece equalizer in decimal 16 bit unsigned integer format.
ddddd Saturated samples after earpiece equalizer in decimal 16 bit unsigned integer format.
nee.e Level of the microphone signal level detector in dB format.
Requires log10 function in MCU. 16 bit signed value in DSP, 0 dB = 32768.

fff.f Level of the signal after earpiece equalizer in dB format.
Requires log10 function in MCU. 16 bit signed value in DSP, 0 dB = 32768.

The display is reset and restarted when a call is placed. When the call is terminated the display is frozen to show the last values. Display will not be saved to EEPROM. Saturated sample counters aaaaa – ddddd are counted in DSP and only the new counter value is sent to MCU. The microphone and earpiece signal levels are calculated in DSP and it sends the linear values to MCU which makes the linear to dB transformation (20*log10(x)) for the level values.
Display 80 – Reset and restart timers

```
**************        ##############
*            *        # Use menu  #
*   TIMERS   *        # to reset  #
*   RESET    *        # field test #
*            *        # timers    #
**************        ##############
```

With this display all timers of display 82 can be reset.

These timers will be automatically reset after the battery has been fully charged and the charger is disconnected. Thus it's not always necessary to use the display 80.

Display 81 – Enable or disable timers

```
**************
*            *
*   TIMERS   *
*   XXXXXXXX  * XXXXXXXX := ENABLED or DISABLED
*            *
**************
```

This display will start or stop the timers.

On power off the values of the timer displays are stored onto the EEPROM, where they will be read during power on. To initialize the counters to zero, use display 80. Timers will be automatically disabled when recharge battery message is reached.

Also the current state of timer disabling/enabling is stored onto the EEPROM.

Display 82 – Test timer display

```
++++++++++++++        ##############
+aaaaa bbbbb +        #PwrOn InServ#
+ccccc ddddd +        #NSPS TxON #
+ TIMERS eee +        #   Timers   #
+            +        #   Status   #
++++++++++++++        ##############
```

aaaaa timer for how long the phone has been powered on
bbbbbb timer for how long the phone has been in service
ccccc timer for 'no service, power save'-state
ddddd timer for how long the transmitter has been on
eee state of timers, ON/OFF

All the values are shown in one minute resolution. The accuracy of the timers is about one second. The display uses following format for timers:
HHMM where HH is hours and MM is minutes.
All timers of this display will be reset if the charger is disconnected from the mobile with fully charged battery. The maximum value of the timers is 99 h 59 min.
When 'powered on' timer has reached value 9959, all timers will be stopped.

NOTE: When the maxium usage time of the phone is required (e.g. idle time measurement) then ALL field test displays must be deactivated!
Display 83 – Control of task information displays

```
**************
*            *
* SHOW TASK *
* XXXXXXXXX  * XXXXXXXXX is "STACKS", "MSG BUFS" or "FAST BUFS"
*            *
**************
```

Shows what information about tasks is currently shown in displays 84 - 87.

To select the type of information select this display via menu.
Type is changed in order STACKS -> MSG BUFS -> FAST BUFS -> STACKS.
So, if STACKS is currently displayed and you want to see FAST BUFS, you have to
select this display twice via menu.

"STACKS" shows free stack space in worst case.
"MSG BUFS" shows the peak number of pending messages.
"FAST BUFS" shows the peak number of pending fast messages.

Display 84, 85 & 86 – Information about tasks

```
+++++++++++++
+ aaaa bbbb +
+ cccc dddd +
+ eeee ffff +
+ gggg hhhh +
+++++++++++++
```

aaaa task 0, 8, 16
bbbb task 1, 9, 17
cccc task 2, 10, 18
dddd task 3, 11, 19
eeee task 4, 12, 20
ffff task 5, 13, 21
gggg task 6, 14
hhhh task 7, 15

The numbers are showing how many stack memory locations have been empty in the worst
case. So, if number is zero, stack has been full.

Values are not stored to EEPROM when the phone is powered off.

The task names are listed on the help display.

Display 87 – Information about OS_SYSTEM_STACK

```
+++++++++++++        ##############
+ aaaa  bbbb +        #  FIQ  IRQ  #
+            +        #            #
+            +        #            #
+            +        #            #
+++++++++++++        ##############
```

aaaa OS_SYSTEM_STACK. No clue what this means.

Values are not stored to EEPROM.
Display 88 – Information of the current MCU and DSP software versions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaaa bbbbbb*</td>
<td>version number of MCU SW</td>
</tr>
<tr>
<td>Date cccccc</td>
<td>PPM version</td>
</tr>
<tr>
<td>ChkSum dddd</td>
<td>date of version.c (e.g. 990102 means 02. January 1999)</td>
</tr>
<tr>
<td>eeeeeeeeeee</td>
<td>MCU SW checksum</td>
</tr>
<tr>
<td>eeeeeeeeeeee</td>
<td>version of DSP software</td>
</tr>
</tbody>
</table>

Display 88 (9210) – Version information for organizer part

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaaa bbbbbb*</td>
<td>organizer module firmware version</td>
</tr>
<tr>
<td>*Version Date#</td>
<td>organizer module firmware date code</td>
</tr>
<tr>
<td>Checksum cccc</td>
<td>organizer module firmware checksum</td>
</tr>
<tr>
<td>HW: dddd</td>
<td>organizer module hardware version</td>
</tr>
</tbody>
</table>

Display 89 – Information of the current HW and TXT versions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaaa</td>
<td>Hardware version (e.g. 2350)</td>
</tr>
<tr>
<td>bbbbbbb</td>
<td>Text version (e.g. U190199)</td>
</tr>
</tbody>
</table>

Display 89 (9210) – Version information for phone part

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaaa bbbbbb*</td>
<td>phone module firmware version</td>
</tr>
<tr>
<td>*Version Date#</td>
<td>phone module firmware date code</td>
</tr>
<tr>
<td>PPM: cccccc</td>
<td>PPM software version code</td>
</tr>
<tr>
<td>ddddd</td>
<td>DSP software version code</td>
</tr>
</tbody>
</table>
Display 96 (3210) – receiver temperature

3210 ****************# ##############
VCX0ADC: aaa #ADC VALUE #
TEMP (C): bb #RF TEMP (C) #
TEMP (K): ccc #RF TEMP (K) #
* * # #
****************# ##############

bb receiver temperature in degrees C
ccc same value, but in K

Display 99 (7110) – FBUS mode and Accessory mode

7110: ****************# ##############
* Ead:aaaa* # EAD value #
* Mod:bb* # acc.status #
* MODE: cccc* # FBUS mode #
* * # #
****************# ##############

aaaaa no clue
bb type of connected accessory (HP: Headphone, DC: Datacable)
cccc currently selected data transfer mode (FBUS, MBUS, AT)

Display 100 (7110, 62XX) – Internal memory usage, overview

7110, ****************# ##############
62XX: ****************# ##############
aaaaaa bb.c #MemUseT %Use#
ccccccc dd.d #MemRelT %Rel#
eeeeeee ff.f #MemUnuT %Unu#
* * # #
****************# ##############

aaaaaa the total amount of used memory in the phone
bb.b the used percentage of the phones internal memory (% used)
 (phonebook, tasks, calendar, logos, ring tones etc.)
ccccccc the total amount of released memory in the memory pool
dd.d the percentage of memory which was used, but is currently released
eeeeeee the total amount of free memory in the phone
ff.f the amount of free memory available (% not used)
Display 102 (9210) – last data call type

9210 *************** ****************
*Data call * #Data call #
*type: * #type #
*aaaaaa * # #
* * # #
*************** ****************

aaaaaa type of the last successful data call

Display 103 (9210) – last MT call type

9210 *************** ****************
*Incoming * #Incoming #
*call type: * #call type #
*aaaaaa * # #
* * # #
*************** ****************

aaaaaa type of the last successful MT call

Display 107 (62XX) – Voice dialling feature

62XX *************** ****************
ND a b c #ND mm cs ps #
* d e f* # ss po da #
ggggg hhhhh #Ver Date #
* * # #
*************** ****************

a number of recorded voice tags currently in phone
b no clue
c status of the voice dialler
0 - not initialized
1 - last VT not recognized
5 - last VT recognized
7 - Voice dialling cancelled
8 - in use

Display 110 to 115 (7110, 62XX) – Internal memory usage, detail

7110, *************** ****************
62XX: * a bbbcccccc* #Pn Sta %Use#
ddddd eeeeee #EraseCn %Rel#
fffffff ggggg #NextRec %Unu#
h i j kkkk #Cu Cl Cc McC#
*************** ****************

a the number of the current memory bank
bbb shows wether this bank is used (0xFFF8)
or free (7110: 0xfffe, 62XX: 0xffff)
cccc percentage of memory used in this bank
dddd erase counter for bank (significant when using flash memory)
eeeeee percentage of memory which is released in this bank
fffff memory location of next free record
ggggg percentage of memory available in this bank
Display 130 (7110) – Slide open counter

7110: ************** ##############
aaa bbbbbb #Slide Open#
* * # #
* * # #
* * # #
************** ##############

bbbbb shows how many times the slide has been opened. The value is shown in hexadecimal digits.

Display 132 (3310) – Call information

3310: ************** ##############
BS: aaaaaaaa #BS_Call Cnt #
M0: bbbbbb #MO_Call cnt #
DRC:cccccccc #Dropped call#
TIM:dddddddd #Call time #
************** ##############

aaaaaaa the total number of received (MT) calls
bbbbbbbb the total number of placed (MO) calls
cccccccc the total number of dropped calls
dddddddd the accumulated call time in seconds of all calls

Display 133 (3310) – Charger information

3310: ************** ##############
BFu:aaaaaaaa #FullChargCnt#
ChC:bbbb cc #ChaCon Wrong#
*StB: * #Standby time#
*NSe: * # NoServTimer#
************** ##############

aaaaaaa shows how many times the ‘Battery Full’-message has been displayed whilst the phone was activated
bbbbb shows how often the charger was correctly connected and recognized by the phone. The value is increased either when the charger is recognized or when the charger is inserted, the phone is in a charging state and is switched on
cc number of times a wrong or defective charger was identified
Display 240 (no output) – Clear counters and start timers

This Display has no output, but does the following when directly selected:

Resets...
 ...handover counters (display 40 ff.),
 ...test counters (display 60 ff.) and
 ...timers (display 80 ff.)

and starts the test counters from display 81.

Display 241 (no output) – Disable the netmonitor menu

This Display has no output, but does the following when directly selected:

Disables the netmonitor menu.

Note: Every display number which results in 241 from MOD 256 will deactivate the netmonitor menu, so display 497 and display 753 will do the same. There is absolutely no such feature like sending SMS for free or to make free calls for 90 seconds.

To reactivate the netmonitor menu, you may want to

- use Logomanager (http://www.logomanager.co.uk)
- use NetMonitor from A. Schmidt (http://www.aschmidt.de)
- use TAPIR-G from Nobbi (http://www.nobbi.com/monitor/)
- use GNOKII (http://www.gnokii.org)
- use PCLocals from Nokia

Display 242 (no output) – Disable R&D field test displays

This Display has no output, but does the following when directly selected:

Disables R&D filed test displays, but leaves the netmonitor displays (1..19) active, so you will have only a limited netmonitor activated.